\(\int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\) [745]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 381 \[ \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 \left (A b^2+a^2 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b^2 \sqrt {a+b} d}-\frac {2 (A b-a C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b \sqrt {a+b} d}-\frac {2 A \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a^2 d}+\frac {2 \left (A b^2+a^2 C\right ) \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \]

[Out]

2*(A*b^2+C*a^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))
/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/b^2/d/(a+b)^(1/2)-2*(A*b-C*a)*cot(d*x+c)*EllipticF((a+b*sec(d*
x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/
b/d/(a+b)^(1/2)-2*A*cot(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b
)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d+2*(A*b^2+C*a^2)*tan(d*x+c)/a/(a^2
-b^2)/d/(a+b*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 381, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {4146, 4143, 4006, 3869, 3917, 4089} \[ \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 \left (a^2 C+A b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a b^2 d \sqrt {a+b}}-\frac {2 A \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a^2 d}+\frac {2 \left (a^2 C+A b^2\right ) \tan (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {2 (A b-a C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a b d \sqrt {a+b}} \]

[In]

Int[(A + C*Sec[c + d*x]^2)/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(2*(A*b^2 + a^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[
(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a*b^2*Sqrt[a + b]*d) - (2*(A*b - a*C
)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d
*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a*b*Sqrt[a + b]*d) - (2*A*Sqrt[a + b]*Cot[c + d*x]*El
lipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))
/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a^2*d) + (2*(A*b^2 + a^2*C)*Tan[c + d*x])/(a*(a^2 - b^2)*d
*Sqrt[a + b*Sec[c + d*x]])

Rule 3869

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b
*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b)*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b
*Csc[c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4006

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4143

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[Csc[e + f*x
]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rule 4146

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(
A*b^2 + a^2*C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(a*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(a*(m + 1)*(
a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[A*(a^2 - b^2)*(m + 1) - a*b*(A + C)*(m + 1)*Csc[e + f*x] +
(A*b^2 + a^2*C)*(m + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && Int
egerQ[2*m] && LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \left (A b^2+a^2 C\right ) \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 \int \frac {-\frac {1}{2} A \left (a^2-b^2\right )+\frac {1}{2} a b (A+C) \sec (c+d x)+\frac {1}{2} \left (A b^2+a^2 C\right ) \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )} \\ & = \frac {2 \left (A b^2+a^2 C\right ) \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 \int \frac {-\frac {1}{2} A \left (a^2-b^2\right )+\left (\frac {1}{2} a b (A+C)+\frac {1}{2} \left (-A b^2-a^2 C\right )\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )}-\frac {\left (A b^2+a^2 C\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )} \\ & = \frac {2 \left (A b^2+a^2 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b^2 \sqrt {a+b} d}+\frac {2 \left (A b^2+a^2 C\right ) \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {A \int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx}{a}-\frac {(A b-a C) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{a (a+b)} \\ & = \frac {2 \left (A b^2+a^2 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b^2 \sqrt {a+b} d}-\frac {2 (A b-a C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b \sqrt {a+b} d}-\frac {2 A \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a^2 d}+\frac {2 \left (A b^2+a^2 C\right ) \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(1119\) vs. \(2(381)=762\).

Time = 20.23 (sec) , antiderivative size = 1119, normalized size of antiderivative = 2.94 \[ \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {(b+a \cos (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \left (\frac {4 \left (A b^2+a^2 C\right ) \sin (c+d x)}{a b \left (-a^2+b^2\right )}+\frac {4 \left (A b^2 \sin (c+d x)+a^2 C \sin (c+d x)\right )}{a \left (a^2-b^2\right ) (b+a \cos (c+d x))}\right )}{d (A+2 C+A \cos (2 c+2 d x)) (a+b \sec (c+d x))^{3/2}}-\frac {4 (b+a \cos (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \sqrt {\frac {1}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \left (a A b^2 \tan \left (\frac {1}{2} (c+d x)\right )+A b^3 \tan \left (\frac {1}{2} (c+d x)\right )+a^3 C \tan \left (\frac {1}{2} (c+d x)\right )+a^2 b C \tan \left (\frac {1}{2} (c+d x)\right )-2 a A b^2 \tan ^3\left (\frac {1}{2} (c+d x)\right )-2 a^3 C \tan ^3\left (\frac {1}{2} (c+d x)\right )+a A b^2 \tan ^5\left (\frac {1}{2} (c+d x)\right )-A b^3 \tan ^5\left (\frac {1}{2} (c+d x)\right )+a^3 C \tan ^5\left (\frac {1}{2} (c+d x)\right )-a^2 b C \tan ^5\left (\frac {1}{2} (c+d x)\right )+2 a^2 A b \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-2 A b^3 \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+2 a^2 A b \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-2 A b^3 \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+(a+b) \left (A b^2+a^2 C\right ) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-a b (a+b) (A+C) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}\right )}{a \left (-a^2 b+b^3\right ) d (A+2 C+A \cos (2 c+2 d x)) \sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )^{3/2} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{1+\tan ^2\left (\frac {1}{2} (c+d x)\right )}}} \]

[In]

Integrate[(A + C*Sec[c + d*x]^2)/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

((b + a*Cos[c + d*x])^2*(A + C*Sec[c + d*x]^2)*((4*(A*b^2 + a^2*C)*Sin[c + d*x])/(a*b*(-a^2 + b^2)) + (4*(A*b^
2*Sin[c + d*x] + a^2*C*Sin[c + d*x]))/(a*(a^2 - b^2)*(b + a*Cos[c + d*x]))))/(d*(A + 2*C + A*Cos[2*c + 2*d*x])
*(a + b*Sec[c + d*x])^(3/2)) - (4*(b + a*Cos[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2)*Sqrt[(1 - Tan[(c + d*x)/2]
^2)^(-1)]*(a*A*b^2*Tan[(c + d*x)/2] + A*b^3*Tan[(c + d*x)/2] + a^3*C*Tan[(c + d*x)/2] + a^2*b*C*Tan[(c + d*x)/
2] - 2*a*A*b^2*Tan[(c + d*x)/2]^3 - 2*a^3*C*Tan[(c + d*x)/2]^3 + a*A*b^2*Tan[(c + d*x)/2]^5 - A*b^3*Tan[(c + d
*x)/2]^5 + a^3*C*Tan[(c + d*x)/2]^5 - a^2*b*C*Tan[(c + d*x)/2]^5 + 2*a^2*A*b*EllipticPi[-1, ArcSin[Tan[(c + d*
x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^
2)/(a + b)] - 2*A*b^3*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*S
qrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + 2*a^2*A*b*EllipticPi[-1, ArcSin[Tan[(c +
d*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2
+ b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*A*b^3*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c +
d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + (
a + b)*(A*b^2 + a^2*C)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 +
Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - a*b*(a + b)*(A + C)*
EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqr
t[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)]))/(a*(-(a^2*b) + b^3)*d*(A + 2*C + A*Cos[2*c
+ 2*d*x])*Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)*(1 + Tan[(c + d*x)/2]^2)^(3/2)*Sqrt[(a + b - a*Tan[(c
+ d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)])

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2906\) vs. \(2(352)=704\).

Time = 8.48 (sec) , antiderivative size = 2907, normalized size of antiderivative = 7.63

method result size
parts \(\text {Expression too large to display}\) \(2907\)
default \(\text {Expression too large to display}\) \(3009\)

[In]

int((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2*A/d/a/(a+b)/(a-b)*(-((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)*((1-cos(d*x+c))^2
*csc(d*x+c)^2-1))^(1/2)*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d
*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2-((a*(1-cos(d*
x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(-(1-cos(d*
x+c))^2*csc(d*x+c)^2+1)^(1/2)*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(
1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b+((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c
))^2*csc(d*x+c)^2-a-b)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*(-(a*
(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c
),((a-b)/(a+b))^(1/2))*a*b+((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)*((1-cos(d*x+
c))^2*csc(d*x+c)^2-1))^(1/2)*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-
cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^2+2*((a*(1
-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(-(1
-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(
a+b))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^2-2*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b
*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1
)^(1/2)*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*EllipticPi(cot(d*
x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*b^2-((1-cos(d*x+c))^4*a*csc(d*x+c)^4-(1-cos(d*x+c))^4*b*csc(d*x+c)^4-2
*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)^(1/2)*(1-cos(d*x+c))^3*a*b*csc(d*x+c)^3+((1-cos(d*x+c))^4*a*csc(d*x+c)^4
-(1-cos(d*x+c))^4*b*csc(d*x+c)^4-2*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)^(1/2)*(1-cos(d*x+c))^3*b^2*csc(d*x+c)^
3+((1-cos(d*x+c))^4*a*csc(d*x+c)^4-(1-cos(d*x+c))^4*b*csc(d*x+c)^4-2*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)^(1/2
)*a*b*(-cot(d*x+c)+csc(d*x+c))-((1-cos(d*x+c))^4*a*csc(d*x+c)^4-(1-cos(d*x+c))^4*b*csc(d*x+c)^4-2*a*(1-cos(d*x
+c))^2*csc(d*x+c)^2+a+b)^(1/2)*b^2*(-cot(d*x+c)+csc(d*x+c)))*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c)
)^2*csc(d*x+c)^2-a-b)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)/((1-cos(d*x+c))^4*a*csc(d*x+c)^4-(1-cos(d*x+c))
^4*b*csc(d*x+c)^4-2*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)^(1/2)/(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c
))^2*csc(d*x+c)^2-a-b)+2*C/d/b/(a+b)/(a-b)*(EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(
cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^2+EllipticF(cot(d*x+c)-csc
(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)
*b^2*cos(d*x+c)^2-EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)^2-EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2
))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^2+2*Ellipt
icF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(co
s(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)+2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+
c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)-2*EllipticE(cot(d*x+c)-csc(d*x+c),
((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*cos
(d*x+c)-2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a
*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/
(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b+(cos(d*x+c)/(cos(d*x+c)+1))^(1/
2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^2-(c
os(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c
),((a-b)/(a+b))^(1/2))*a^2-(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*E
llipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b-cos(d*x+c)*sin(d*x+c)*a^2+cos(d*x+c)*sin(d*x+c)*a*b)*(
a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)

Fricas [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + A)*sqrt(b*sec(d*x + c) + a)/(b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c) + a^2), x)

Sympy [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {A + C \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((A+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)/(a + b*sec(c + d*x))**(3/2), x)

Maxima [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)/(b*sec(d*x + c) + a)^(3/2), x)

Giac [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)/(b*sec(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int((A + C/cos(c + d*x)^2)/(a + b/cos(c + d*x))^(3/2),x)

[Out]

int((A + C/cos(c + d*x)^2)/(a + b/cos(c + d*x))^(3/2), x)